
Ginga-NCL: Declarative Middleware for
Multimedia IPTV Services

Luiz Fernando Gomes Soares, Marcio Ferreira Moreno, Carlos de Salles Soares Neto, and Marcelo
Ferreira Moreno, Pontifical Catholic University of Rio de Janeiro

©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE. The original publication is available at
http://dx.doi.org/10.1109/MCOM.2010.5473867

INTRODUCTION

IPTV systems have brought the last triple-play
service to IP networks. This digital convergence
should be supported not only at low-level net-
work layers, but also at the application layer.
Thus, an application programming language that
is able to support, integrate, and coordinate a
number of different media objects in a simple
and synchronized manner is a very important
requirement in this new domain. The solution
can come from languages using the declarative
paradigm.

Declarative languages emphasize the high-
level description of an application, rather than
its decomposition into an algorithmic implemen-
tation, as is done when using imperative lan-
guages. Such declarative descriptions are easier
to devise and understand than imperative ones,
which usually require a programming expert.
However, declarative languages typically target
an application domain and define a specific
model to design applications in this domain.
When an application design matches the declar-
ative language model, the declarative paradigm
is generally the best choice.

Nested Context Language (NCL) [1] is a
declarative XML-based language initially

designed for hypermedia document specification
for the web. The language’s flexibility, reuse
facility, multidevice support, application content,
presentation adaptability, and mainly its intrinsic
ability to easily define spatiotemporal synchro-
nization among media assets, including viewer
interactions, make it an outstanding solution for
all kinds of digital TV (DTV) systems, particu-
larly IPTV systems. For particular cases, for
example, when dynamic content generation is
needed, NCL provides Lua (imperative) script-
ing language [2] support.

In 2007 NCL was adopted in the Brazilian
terrestrial DTV standard, SBTVD. In the begin-
ning of 2009 NCL and its user agent, called
Ginga-NCL, became part of International Stan-
dard for Digital Broadcasting (ISDB) standards
(the previously known Japanese standard now
increased with Brazilian improvements) and part
of International Telecommunication Union —
Radiocommunication Standardization Sector
(ITU-R) Recommendation BT 1699. Also in
2009, NCL and Ginga-NCL became an ITU —
Telecommunication Standardization Sector
(ITU-T) Recommendation for IPTV services [3].
NCL and Ginga-NCL were designed at the
TeleMídia Laboratory at the Pontifical Catholic
University of Rio de Janeiro (PUC-Rio). The
work was coordinated by the authors of this arti-
cle, who also chaired ITU-T H.761 and the
Brazilian DTV Middleware Working Group.
Independent of the distribution network where
they may be applied, all Ginga-NCL and NCL
specifications are open and totally royalty-free.

A reference open source implementation of
Ginga-NCL1 has been developed to easily inte-
grate a variety of media-object players (for
audio, video, image, text, etc.), including impera-
tive execution engines and other declarative pre-
sentation engines. As aforementioned, Lua code
can be embedded in an NCL application by
means of a special NCL object type called
NCLua. Because of its simplicity, efficiency, and
powerful data description syntax, Lua was con-
sidered the natural scripting language for Ginga-
NCL. The Lua engine2 is small and written in
ANSI/C, making it easily portable to several
hardware platforms. Lua is one of the most pop-
ular languages in the entertainment area.

This article presents some NCL features and
discusses how Ginga-NCL can be used in IPTV

IEEE Communications Magazine • June 201074 0163-6804/10/$25.00 © 2010 IEEE

1 Ginga-NCL reference
implementation is avail-
able under the GPLv2
license at
http://www.ncl.org.br

2 The Lua engine is also
distributed as free soft-
ware under the MIT
license.

ABSTRACT

This article presents the innovative features
of Ginga-NCL, an open middleware specifica-
tion for multimedia IPTV services. Ginga-NCL
relies on the Nested Context Language, a
domain-specific declarative language targeting
multimedia application authoring. As a glue lan-
guage, NCL relates media objects in time and
space without restricting or imposing any media
content type, including media objects with imper-
ative and declarative code written using other
languages. Other NCL features include support
for multidevice presentations, content adapta-
tions, presentation adaptations, and advanced
code reuse. Ginga-NCL allows NCL applications
to be modified on the fly by means of live edit-
ing commands. Initially defined as the standard
middleware for the Brazilian terrestrial DTV
system, Ginga-NCL has recently become part of
ISDB standards and an ITU-T Recommendation
for IPTV services.

CONSUMER COMMUNICATIONS AND NETWORKING

Luiz Fernando Gomes Soares, Marcio Ferreira Moreno, Carlos de Salles Soares Neto, and Marcelo Fer-

reira Moreno, Pontifical Catholic University of Rio de Janeiro

Ginga-NCL: Declarative Middleware for
Multimedia IPTV Services

GOMES SOARES LAYOUT 5/18/10 11:46 AM Page 74

IEEE Communications Magazine • June 2010 75

systems. The article is organized as follows. The
next section overviews some related work. We
then introduce the main NCL concepts. We pre-
sent the Ginga-NCL architecture for IPTV sys-
tems. The last section is dedicated to our final
remarks.

RELATED WORK
DTV applications can be partitioned into a set
of declarative applications and a set of impera-
tive applications [4]. A declarative application is
an application whose initial entity is of a declara-
tive content type. An imperative application is
an application whose initial entity is of an imper-
ative content type.

Most terrestrial DTV systems offer support
for both paradigms. For example, the European
Digital Video Broadcast (DVB)[5] system and
the American Advanced Television Systems
Committee (ATSC) [6] system support Java,
EcmaScript, and XHTML in their middleware
specifications; the Association of Radio Indus-
tries and Businesses (ARIB) Japanese system
also provides both declarative and imperative
support, although current products implement
only the declarative language BML [7], with
EcmaScript as the scripting language. The Brazil-
ian SBTVD system specifies Java and Lua as
imperative languages for its middleware, called
Ginga. NCL is the declarative language of Ginga.

Besides offering an application programming
interface (API) for interactive applications like
terrestrial DTV, an IPTV middleware integrates
specific IPTV components and services. Among
those components, the most common are video
on demand (VoD), linear TV, IP communica-
tion, remote software update, and content search
engines.

Most IPTV service providers use proprietary
middleware implementations [8] from vendors
like Microsoft, Minerva, Orca, Siemens, Soft-
AtHome, and Alcatel-Lucent. Microsoft Media-
room (an evolution of Microsoft TV) [9] is based
on the .NET framework compact for end termi-
nals, in order to offer a C#/XML API (Sil-
verlight) for applications. Minerva Networks has
developed a middleware known as iTVManager
[10], which offers a C language interface for its
applications. The RIGHTV middleware [11],
developed by Orca Interactive, is based on
XHTML browsers. Siemens has acquired Myrio
[12], which offers Java and XHTML APIs. The
SoftAtHome operating platform [13] is a recent
initiative from Orange, Thomson, and Sagem to
provide a declarative application environment
based on HTML, JavaScript, and Adobe Flash.
Alcatel-Lucent’s MiViewTV [14] offers a devel-
opment framework totally based on Adobe
Flash.

Lightweight Interactive Multimedia Environ-
ment (LIME) [15], like NCL, is an ITU-T Rec-
ommendation for IPTV multimedia applications
and is based on the Japanese BML standard for
broadcasting. LIME specifies a small profile of
XHTML, CSS, DOM, and EcmaScript, where
broadcast-specific functions from BML were
removed. The LIME EcmaScript API contains
extensions to deal with IPTV-specific functional-
ities such as IPTV EPG, persistency, content

licensing, media presentation control, and
TCP/IP communications. LIME supports not
only user interaction events, but also broadcaster
events, by means of bevent and beitem elements.
A beitem element describes an event message
and the corresponding action (usually a function
written in EcmaScript) to be accomplished when
the event occurs. Note that although spatiotem-
poral synchronization among media objects can
be controlled by broadcast systems, the behavior
must be imperatively defined using scripts.

After the advent of broadband TV, broadcast
content may share its audience with downloaded
widgets and online tasks like browsing and mes-
saging. This has pushed broadcasters and service
operators to define standardized platforms that
harmonize and explore this hybrid scenario.

HbbTV [16] supports web technologies like
XHTML and EcmaScript for broadcast or down-
loaded applications. However, application signal-
ing is done in the broadcast domain. The HbbTV
standardization process started in the third quar-
ter of 2009 in the European Telecommunica-
tions Standards Institute (ETSI).

The BBC’s Project Canvas [17] is an initiative
to standardize a common platform that broad-
casters can join, making their multimedia con-
tent available to compatible IPTV terminals.
Some discussions and consultations are still run-
ning at BBC Trust, and there are no technical
standards published yet, although web technolo-
gies are said to be a natural choice.

Verizon’s FiOS TV [18] offers a framework
for developing TV widgets based on the Lua lan-
guage. The framework incorporates the Lua vir-
tual machine and extended Lua APIs such as
Graphics, Events, Timers, and Webservices.

Authoring DTV applications using imperative
languages is more complex and more error-
prone than using declarative domain-specific
languages (DSLs). Moreover, imperative inter-
preted system languages like Java have engines
that are very resource consuming and have a
considerable memory footprint. On the other
hand, XHTML carries a legacy from previous
technologies developed for text navigation and
formatting, and lots of add-ons have been creat-
ed to overcome its limitations. XHTML is
focused on user interactions for media asset pre-
sentation synchronization, forcing application
authors to solve spatiotemporal synchronization
that goes further than simple user interactions,
as well as content and presentation adaptations
and other issues, using imperative objects, usual-
ly implemented using EcmaScript. Thus, the
great advantage of using declarative DSL is lost,
with the expense of using a scripting language
greedy in CPU and memory consumption.

A declarative approach that fulfills the main
requirements of a DTV application, relegating
to the imperative approach only particular com-
putations, seems to be the right solution for a
DTV middleware API. This approach would
boost integration, simplicity and better resource
usage in IPTV platforms. Besides that, it would
make the authoring process easier and less error-
prone.

NCL [1] and MPEG-4 Lightweight Applica-
tion Scene Representation (LASeR) [19] are the
technologies currently closest to fulfilling these

A declarative

application is an

application whose

initial entity is of a

declarative content

type. An imperative

application is an

application whose

initial entity is of

an imperative

content type.

GOMES SOARES LAYOUT 5/18/10 11:46 AM Page 75

IEEE Communications Magazine • June 201076

requirements. Based on scalable vector graphics
(SVG) [20] and other extensions [19], LASeR
has its focus on media synchronization, as well
as NCL. Both languages support content and
presentation adaptability, and provide support
for live editing commands. NCL reuse facilities
[21] are more versatile than LASeR’s. NCL also
offers more powerful support to applications tar-
geting multiple exhibition devices. Despite being
a good solution, mainly for mobile devices,
LASeR does not have a commercial implemen-
tation yet.

NCL was the first standardized technology of
the ITU-T multimedia application framework
for IPTV services [3, 22]. Using NCL, an author
can declaratively describe the spatial and tempo-
ral behavior of a multimedia presentation, asso-
ciate hyperlinks (for viewer interactions) with
media objects, define alternatives for content
and content presentation (adaptation), and
describe the presentation layout on multiple
exhibition devices. In addition, NCL provides an
API that allows building and modifying an appli-
cation on the fly through live editing commands.
NCL does not define any media itself. As a glue
language, NCL bypasses legacy problems embed-
ding other objects. Moreover, NCL supports a
very efficient and lightweight scripting language
when algorithmic computations are needed.

THE NESTED CONTEXT LANGUAGE
NCL defines the glue that holds media objects
together in a multimedia presentation. NCL
applications only define how media objects are
structured and related in time and space. As a
glue language, NCL does not restrict or pre-
scribe any media object content type. In this
sense, media objects may be image objects
(JPEG, PNG, etc.), video objects (MPEG, MOV,
etc.), audio objects (MP3, WMA, etc.), text
objects (TXT, PDF, etc.), imperative objects
(Xlet, Lua, etc.), other declarative objects
(HTML, LIME, SVG, nested NCL, etc.), and so
on. Which media objects are supported depends
on which media players are embedded in the
NCL engine. It is worth mentioning that NCL
treats main audiovisual streams like all other
media objects it can relate. It should also be
stressed that NCL treats an XHTML document
as one of its possible media object types. There-
fore, NCL does not substitute but embeds
XHTML-based documents.

In the recently approved revision of ITU-R
Recommendation BT.1699 [23], NCL was intro-
duced as a glue language to harmonize declara-
tive content for DTV. NCL can be viewed as a
feasible solution to promote lightweight integra-
tion among most multimedia application tech-
nologies mentioned in the previous section.

NCL is an XML application that follows the
modularization approach. Several NCL profiles
have been defined. Of special interest is the
Enhanced DTV (EDTV) Profile, defined for
DTV.

Figure 1 shows an almost complete NCL ele-
ment tree. Figure 3 exemplifies an NCL applica-
tion, discussed below to clarify concepts and to
illustrate the use of NCL elements.

The NCL Structure module defines the root

element, <ncl>, and its child elements, <head>
and <body>, following the terminology adopted
by Word Wide Web Consortium (W3C) stan-
dards.

The <head> element may have
<importedDocumentBase>, <ruleBase>,
<transitionBase> , <regionBase> ,
<descriptorBase>, and <connectorBase>
elements as its children. The <body> element

Figure 1. Structure of NCL documents.

1: <ncl>
2: <head>
3: <importedDocumentBase>
4: <importNCL/>
5: </importedDocumentBase>
6: <ruleBase>
7: <importBase/>
8: <compositeRule/>
9: <rule>
10: </ruleBase>
11: <transitionBase>
12: <importBase/>
13: <transition/>
14: </transitionBase>
15: <regionBase>
16: <importBase/>
17: <region>
18: <region/>
19: </region>
20: </regionBase>
21: <descreiptorBase>
22: <importBase/>
23: <descriptor>
24: <descriptorParam/>
25: </descriptor>
26: <descriptorSwitch>
27: <defaultDescriptor/>
28: <bindRule/>
29: <descriptor/>
30: </descriptorSwitch>
31: </descriptorBase>
32: <connectorBase>
33: <importBase/>
34: <causalConnector>
35: <connectorParam/>
36: <compoundCondition/>
37: <compoundAction/>
38: </causalConnector>
39: </connectorBase>
40: </head>
41: <body>
42: <port/>
43: <property/>
44: <media>
45: <area/>
46: <property/>
47: </media>
48: <context>
49: <port/>
50: <property/>
51: <media/>
52: <context/>
53: <link/>
54: <switch/>
55: </context>
56: <switch>
57: <defaultComponent/>
58: <switchPort/>
59: <bindRule/>
60: <media/>
61: <context/>
62: <switch/>
63: <link>
64: <linkParam/>
65: <bind>
66: <bindParam/>
67: </bind>
68: </link>
69: </body>
70: </ncl>

NCL defines the glue

that holds media

objects together in a

multimedia

presentation.

NCL applications

only define how

media objects are

structured and

related, in time and

space. As a glue

language, NCL does

not restrict or

prescribe any media-

object content type.

GOMES SOARES LAYOUT 5/18/10 11:46 AM Page 76

IEEE Communications Magazine • June 2010 77

may have <port>, <property>, <media>,
<context>, <switch>, and <link> elements
as its children. The <meta> and <metadata>
elements, omitted in Fig. 1, may be child ele-
ments of <head>, <body>, and <context>
elements. The <body> element is treated as a
context object, as defined in what follows.

The <media> element defines a media object
specifying its type and content location. Some
special types are predefined by the language:
application/x-ncl-settings type, speci-
fying an object whose properties are global vari-
ables defined by the application author or
reserved environment variables manipulated by
an NCL user agent; application/x-ncl-
time type, specifying a <media> element whose
content is the Universal Time Coordinated
(UTC); application/x-ncl-NCL type speci-
fying a <media> element whose content is
another NCL embedded application; and imper-
ative media object types application/x-
ncl-NCLua and
application/x-ncl-NCLet , specifying
<media> elements whose content is a code span
written in Lua or Java languages, respectively.

The <context> element defines a context
object. A context is a composite that contains a
set of objects (media, context, or switch) and a
set of links. Like the <body> element, <con-
text> elements may have <port>, <proper-
ty>, <media>, <context>, <switch>, and
<link> child elements.

The <switch> element allows for the defini-
tion of alternative objects (represented by
<media>, <context>, and <switch> ele-
ments) to be chosen in presentation time. Test
rules used for choosing the switch component
are defined by <rule> or <compositeRule>
elements that are grouped by the <ruleBase>
element, defined as a child of the <head> ele-
ment.

NCL allows defining object interfaces that
are used in relationships with other object inter-
faces. The <area> element allows the definition
of a content anchor representing a spatial, tem-
poral, or spatiotemporal segment in a media
object’s (<media> element) content, or a code
span in imperative media objects. The <prop-
erty> element is used for defining object prop-
erties (local variables) or a group of object
properties as one of the object interfaces. The
<port> element specifies a composite (<con-
text>, <body>, or <switch> element) port
together with its respective mapping to an inter-
face of one of the composite child components.
The <switchPort> element allows the cre-
ation of <switch> element interfaces that are
mapped to a set of alternative interfaces of the
switch’s internal objects.

The <descriptor> element specifies tem-
poral and spatial information needed to present
each media object. The element may refer to a
<region> element to define the initial position
of a <media> element in some output device.
The set of descriptors of a document is defined
inside the <descriptorBase> element, a
child of the <head> element. Also inside the
<head>, the <regionBase> element defines a
set of <region> elements for a given class of
devices in a multidevice environment, as illus-

trated in Fig. 2 and discussed afterward. Each
<region> may contain another set of nested
<region> elements, and so on, recursively;
regions define areas (e.g., screen windows), and
are referred to by <descriptor> elements, as
previously mentioned.

A <causalConnector> element represents
a relation that may be used for creating <link>
elements. In a causal relation, a condition role
shall be satisfied in order to trigger an action
role. Conditions and actions are defined as chil-
dren of <link> elements. A <link> element
binds (through its <bind> elements) an object’s
interfaces to connector roles (conditions or
actions), defining a spatiotemporal relationship
among objects (<media> , <context> ,
<body>, or <switch> elements).

The <descriptorSwitch> element con-
tains a set of alternative descriptors to be associ-
ated with media objects. Analogous to the
<switch> element, the <descriptor-
Switch> choice is done during document pre-
sentation, using test rules defined by <rule> or
<compositeRule> elements.

The <importBase> element allows any
base to incorporate another already defined
external base. Additionally, NCL documents may
be imported as a whole through <importNCL>
elements. The <importedDocumentBase>
element specifies a set of imported NCL docu-
ments, and shall also be defined as a child ele-
ment of the <head> element.

Some important NCL elements’ attributes are
defined in other NCL modules. The EntityReuse
module allows an NCL element to be reused
[21]. This module defines the refer attribute,
which identifies the element that will be reused.
Only <media> , <context> , <body> , and
<switch> may be reused. The KeyNavigation
module provides extensions necessary to describe
focus movement operations (navigation control)
among media objects. The Animation module
provides the necessary extensions to describe
what happens when a property value is changed.
The change may be instantaneous, but it may
also be carried out during an explicitly declared
duration, either linearly or step by step. The
Animation module defines attributes that may
be incorporated by actions, defined as child ele-
ments of <causalConnector> elements.

The NCL <transitionBase> element
specifies a set of transition effects, defined by

Figure 2. NCL multidevice application.

GOMES SOARES LAYOUT 5/18/10 11:46 AM Page 77

IEEE Communications Magazine • June 201078

<transition> elements, and shall be defined
as a child element of the <head> element. Tran-
sition effects can be applied at the beginning or
end of a media object presentation, as defined in
attributes of the <descriptor> element asso-
ciated with the media object.

In order to illustrate an NCL use case,
assume the following simple application: during
a soccer game animation, an advertisement, tem-
porally related with a special scene of the anima-
tion, is presented, allowing a viewer to interact
to buy the product (soccer shoes). In order to
avoid annoying other viewers, the interaction
processes will not be exhibited on the TV screen,
but on secondary device screens, for example,
mobile phones. Figure 2 illustrates this applica-
tion. The complete NCL code is presented in
Fig. 3.

In Fig. 3, lines 5 to 9 define two regions in
the base device (the TV set). The “main-
ScreenRg” region occupies the whole display
and the “iconRg” region (with zIndex=“1”)
overlays the previous region (default zIn-
dex=“0”) in the bottom right corner of the

device screen. Lines 10 to 12 define the
“advertRg” region as filling the whole “sys-
temScreen(2)” secondary display. Lines 13 to
18 define the descriptor base, whose
<descriptor> elements define in which region
each related media object will be exhibited. The
“iconDs” descriptor also specifies the explicit
duration of 40 s for the icon exhibition.

Lines 19 to 29 define the connector base. The
causal connector “onBeginStart” has its con-
dition satisfied when a media object’s anchor
starts its presentation, triggering, as a result, the
starting presentation action on another media
object’s anchor. The causal connector “onKey
SelectionStart” specifies that the selection
of a media object’s anchor, by pressing a key,
triggers the starting presentation action on
another media object’s anchor.

The <body> element defines the document
structure. The port in line 32 states from which
media object the document presentation initiates
(in this case, the “video” media object). The
“video” media object (lines 33 to 36) is
received from
“rtp://www.ginga.org.br/video.
mp4” to be presented in full screen, as defined
by its descriptor. The “icon” is an imperative
media-object with Lua code, implementing a
blinking soccer shoes image. The “advert”
media object (lines 39 and 40) is an XHTML
content to be presented on secondary devices.

Lines 41 to 45 define the first relationship,
stating that the “icon” media object must start
its exhibition as soon as the “iconA” temporal
anchor of the “video” media object begins its
presentation. Lines 46 to 50 specify another rela-
tionship, establishing that a viewer interaction
with the “icon” image pressing the remote
control RED key must start “advert” media
object presentation (a purchase web page) on
secondary devices.

The Lua code that carries out the soccer
shoes animation is presented in Fig. 4.

The isON and stop flags (line 1) control
when the soccer shoes icon is presented and
when the animation stops, respectively. The
function myBlinkAnimation is used to
redraw the canvas, performing the blink effect
on the icon. The function starts getting the can-
vas size (line 3), draws a rectangle filling the
canvas (line 4), and then combines the soccer
shoes image with the canvas, depending on the
isON flag value (lines 5 to 7). Line 8 updates
the isON flag, and line 9 calls the canvas flush,
in order to update the screen. Line 10 calls
myBlinkAnimation every 1000 ms, while
stop flag is true.

The NCLua API defines an event-oriented
communication between NCL and Lua codes.
When the Lua object is started, line 18 registers
an event handler for the stop presentation event
to be received from NCL, and starts the blinking
animation (line 19), calling the myBlinkAni-
mation function. When an NCL link stops the
Lua object, a “stop” event is received and
treated by lines 13 to 16.

THE GINGA-NCL ARCHITECTURE
Ginga-NCL was initially proposed for terrestrialFigure 3. NCL application code.

1: <?xml version=”1.0” encoding=”ISO-8859-1”?>
2: <ncl id=”merchandisingDocument”
3: xmlns=”http://www.ncl.org.br/NCL3.0/EDTVProfile:>
4: <head>
5: <regionBase>
6: <region id=”mainScreenRg”/>
7: <region id=”iconRg” bottom=”10%” right=”10%”
8: width=”20% height=”20%” zIndex=”1”/>
9: </regionBase>
10: <regionBase device=”systemScreen(2)”>
11: <region id=”advertRg”/>
12: </regionBase>
13: <descriptorBase>
14: <descriptor id=”mainScreenDs” region=”mainScreenRg”/>
15: <descriptor id=”iconDs” region=”iconRg”
16: explicitDur=”40s”/>
17: <descriptor id=”advertDs” region=”advertDs”/>
18: </descriptorBase>
19: <connectorBase>
20: <causalConnector id’”onBeginStart”>
21: <simpleCondition role=”onBegin”/>
22: <simpleAction role=”start”/>
23: </causalConnector>
24: <causalConnector id=”onKeySelectionStart”>
25: <connectorParam name=”keyCode”/>
26: <simpleCondition role=”onSelection”key=”$keyCode”/>
27: <simpleAction role=”start”/>
28: </causalConnector>
29: </connectorBase>
30: </head>
31: <body>
32: <port id=”mainP” component=”video”/>
33: <media id=”video” descriptor-”mainScreenDs”
34: src=”rtp://www.ginga.org.br/video.mp4”>
35: <area id=”iconA” begin=”10s” end=”50s”/>
36: </media>
37: <media id=”icon” descriptor=”iconDs”
38: src=” blinkAnimation.lua”/>
39: <media id=”advert” descriptor=”advertDs”
40: src=”http://www.ginga.org.br/buy.xhtml”/>
41: <link xconnector=”onBeginStart”>
42: <bind role=”onBegin” component=”video”
43: interface=”iconA”/>
44: <bind role=”start” component=”icon”/>
45: </link>
46: <link xconnector=”onKeySelectionStart”>
47: <linkParam name=”keyCode” value=”RED”/>
48: <bind role=”onSelection” component=”icon”/>
49: <bind role=”start” component=”advert”/>
50: </link>
51: </body>
52: </ncl>

GOMES SOARES LAYOUT 5/18/10 11:46 AM Page 78

IEEE Communications Magazine • June 2010 79

DTV systems. Then the same architecture and
facilities were applied to IPTV. The modular
architecture of Ginga-NCL also allows for its use
with other transport systems (e.g., satellite and
cable TV). Figure 5 depicts the Ginga-NCL
components and how they relate with other com-
ponents of a general IPTV architecture.

The Ginga-NCL Presentation Engine is a log-
ical subsystem responsible for running NCL
applications. The core of the Presentation
Engine is the Formatter. This component is in
charge of receiving and controlling multimedia
applications written in NCL. Applications are
delivered to the Formatter by the Ginga Com-
mon Core (Ginga-CC) subsystem.

Upon receiving an application, the Formatter
requests the XML Parser and Converter compo-
nents to translate the NCL specification to the
Ginga-NCL internal data structures necessary
for controlling the application presentation.
From then on, the Scheduler component is start-
ed in order to orchestrate the presentation. The
prefetching of a media object’s content, the eval-
uation of link conditions, and the scheduling of
corresponding link actions that guide the presen-
tation flow are tasks performed by the Sched-
uler. In addition, the Scheduler is responsible for
commanding the Player Manager component to
instantiate appropriate players, according to the
media content types to be exhibited. Media con-
tents are acquired through the protocol stack,
and they can come from different communica-
tion networks.

A generic API establishes the necessary
communication between players and the Pre-
sentation Engine (Scheduler component).
Thanks to this API, Ginga-NCL and Ginga-CC
are strongly coupled but independent subsys-
tems. Ginga-CC can be substituted by other
third party implementations for IPTV engines,
allowing Ginga-NCL to be integrated with
other IPTV middleware, extending their func-
tionalities with facilities to support NCL DTV
applications.

Players are responsible for notifying the Pre-
sentation Engine of events defined in NCL appli-
cations, that is, when a media segment (an
anchor) begins or ends its presentation, or when
it is selected. Players that do not follow the
generic API must use the services provided by
Adapters.

In Ginga-NCL a DTV application can be
generated or modified on the fly using NCL
editing commands. The Presentation Engine
deals with NCL applications collected inside a
data structure known as a private base. A Pri-
vate Base Manager component is in charge of
receiving NCL editing commands and maintain-
ing the NCL documents being presented. NCL
editing commands [3] are divided into three sub-
sets. The first one focuses on private base activa-
tions and deactivations (openBase, activate
Base , deactivateBase , saveBase , and
closeBase commands). In a private base NCL
applications can be started, paused, resumed,
stopped, and removed, through well defined
editing commands that compose the second sub-
set. The third subset defines commands for
updating an application on the fly, allowing NCL
elements to be added and removed, and allowing

values to be assigned to NCL <property> ele-
ments.

The Ginga-NCL Presentation Engine sup-
ports multiple presentation devices through its
Layout Manager component. This component is
responsible for mapping all regions defined in an
NCL application to regions on exhibition devices.

The Context Manager component of Ginga-
CC is responsible for gathering platform charac-
teristics and viewer profiles into a database used
to update an NCL application’s global variables
defined in the NCL settings object, presented in
the previous section. This information can then
be used to adapt an application.

The display graphical model defined by the
receiver platform is maintained by the Graphics
Manager component, which is in charge of han-
dling operations on graphic planes and zIndex
overlay requests.

The Data Processing component offers sup-
port for acquiring data transported in DSM-CC
carousels [10] or other pushed data protocols.
The Persistency component is in charge of every
data storage management requested by applica-
tions. The Tuner component is responsible for
offering an API for RF or IPTV channel man-
agement (broadcast RF frequency tuning or
multicast group entry, respectively). The Search
Engine component can be activated by an elec-
tronic program guide (EPG) or another service
that needs data mining. Security management is
performed by the DRM and Conditional Access
(CA) components. Finally, each component of
Ginga can be updated through the Update Man-
ager component.

IPTV-specific services, such as VOD and
datacasting, are outside the Ginga-NCL scope.
However, an API is defined offering NCL ser-
vices to these IPTV service components. Thus, a
VoD service can, for example, play an NCL
DTV application besides the main audiovisual
stream requested. In addition, a whole VoD ser-
vice can be written in NCL/Lua, as well as other
IPTV services like widget portals, gaming, and
EPGs.

FINAL REMARKS
The Ginga-NCL open source reference implemen-

Figure 4. Lua application code.

1: local isON, stop = true, false
2: function myBlinkAnimation()
3: local w,h = canvas:attrSize()
4: canvas:drawRect(’fill’, 0, 0, w, h)
5: if isON then
6: canvas:compose(0, 0, canvas:new(”soccer_shoes.png”))
7: end
8: isON = not isON
9: canvas:fluch()
10: if not stop then event.timeer(1000, myBlinkAnimation) end
11: end
12: function handler(evt)
13: if evt.class == ‘ncl’ and evt.type == ‘presentation’
14: and evt.action == ‘stop’ then
15: stop=true
16: end
17: end
18: event.register(handler)
19: myBlinkAnimation()

GOMES SOARES LAYOUT 5/18/10 11:46 AM Page 79

IEEE Communications Magazine • June 201080

tation can be obtained from http://www.ncl.org.br.
There are several commercial implementa-

tions of Ginga-NCL for terrestrial set-top boxes.
Some of them also offer support for IPTV plat-
forms. Some commercial set-top boxes plan to
offer Ginga-NCL support for both IPTV and
satellite TV.

In agreement with the ITU-T multimedia
application framework for IPTV [22], this article
proposes Ginga-NCL integration with third party
IPTV middlewares, extending their API to sup-
port NCL DTV applications. The integration
can be done through adapting Ginga-CC to
IPTV platforms or adapting the third-party
IPTV middleware’s core to provide the API
requested by Ginga-NCL.

Several advantages come from Ginga-NCL
integration to IPTV platforms. First, Ginga-NCL
provides a powerful declarative language target-
ed to the DTV application domain, unlike all
other DTV declarative middleware specifica-
tions, which are based on general-purpose lan-
guages or web technologies.

Second, NCL applications are easier to design
and usually do not require programming exper-
tise, as imperative language approaches do.
Imperative approaches occasionally put applica-
tion portability at risk, presentation control is
much more difficult to achieve as a rule, and
they are more prone to errors committed by
application programmers.

Third, an expressive declarative language
such as NCL can support almost all usual DTV
applications, and for those that do not match the
NCL model focus, NCL supports the efficient
and lightweight Lua scripting language.

Finally, it is possible to build hybrid receivers
supporting both terrestrial DTV and IPTV (and
other DTV systems as well), decreasing receiver
costs and offering both services to users. The
glue-language approach of NCL is an efficient

and suitable solution in such a hybrid scenario
where harmonization is desirable and now
demanded.

REFERENCES
[1] ABNT NBR, “Digital Terrestrial Television — Data Coding

and Transmission Specification for Digital Broadcasting
— Part 2: Ginga-NCL for Fixed and Mobile Receivers —
XML Application Language for Application Coding”;
http://www.abnt.org.br/imagens/Normalizacao_TV_Digi-
tal/ABNTNBR15606-2_2007Ing_2008.pdf

[2] R. Ierusalimschy, Programming in Lua, 2nd ed., Lua.org,
2006.

[3] ITU-T Rec. H.761, “Nested Context Language (NCL) and
Ginga-NCL for IPTV Services,” Geneva, Apr. 2009.

[4] S. Morris and A. Smith-Chaigneau, Interactive TV Stan-
dards: A Guide to MHP, OCAP, and JavaTV, Focal Press,
2005.

[5] ETSI Std. TS 102 812, “Digital Video Broadcasting
(DVB), Multimedia Home Platform (MHP) Specification,”
v. 1.1.1, 2003.

[6] ATSC Std., “Advanced Application Platform (ACAP),”
Doc. A/101, 2005.

[7] ARIB STD-B24 v. 3.2, “Volume 3: Data Coding and Trans-
mission Specification for Digital Broadcasting,” 2002.

[8] “IPTV Middleware Market Dynamics,” Light Reading
Insider, vol. 6, no 9.

[9] Microsoft, “Microsoft Mediaroom”; http://www.microsoft.
com/mediaroom/

[10] Minerva Networks; http://www.minervanetworks.com
[11] Orca Interactive; http://www.orcainteractive.com
[12] Myrio and Nokia Siemens Networks; http://www.

myrio.com
[13] Soft At Home; http://www.softathome.com
[14] Jornada en la Cátedra Alcatel-Lucent, “IPTV Trends,”

Madrid, Spain 2009.
[15] ITU-T Rec. H.762, “Lightweight Interactive Multimedia

Environment,” Geneva, Dec. 2009.
[16] HbbTV, “HbbTV Overview,” EBU/ETSI Hybrid Broadcast

Broadband Wksp., Amsterdam, 2009.
[17] The Project Canvas Wiki; http://www.projectcanvas.

co.uk
[18] Verizon FiOS TV Development Resources; https://www22.

verizon.com/fiosdeveloper/General/Resource.aspx
[19] ISO/IEC 14496-20, “Lightweight Application Scene

Representation (LASeR) and Simple Aggregation Format
(SAF),” 2006.

[20] W3C Rec., “Scalable Vector Graphics — SVG 1.1 Speci-
fication,” 2003; http://www/w3/org/TR/SVG11

Figure 5. The Ginga-NCL architecture for IPTV platforms.

Media streamsDSM-CC

RTP
TS and others

TCP UDP

IP

MPE
RTCPRSTPHTTPFTP

IGMP

SI

Bridge

NCL context
manager Scheduler

XML parsers

Persistency Context manager

CA Search engine

Tuner

Update manager

G. managerDRM
Data

processing Players

Private base
manager

Converters

Adapters

Formatter

Layout managerPlayer
manager

VoIP

IPTV Services/Applications

Protocol stack

Ginga-NCL presentation engine

Ginga Common-Core

EPG

Gaming

PPV VOD

There are several

commercial

implementations of

Ginga-NCL for

terrestrial set-top

boxes. Some of

them also offer

support to IPTV

platforms. Some

commercial set-top

boxes plan to offer

Ginga-NCL support

both for IPTV and

for satellite TV.

GOMES SOARES LAYOUT 5/18/10 11:46 AM Page 80

IEEE Communications Magazine • June 2010 81

[21] L. F. G. Soares and C. S. Soares Neto, “Nested Context
Language 3.0 — Reúso e Importação,” tech. rep., Infor-
matics Dept., no. 33, 2009.

[22] ITU-T Rec. H.760, “Overview of Multimedia Application
Frameworks for IPTV,” Geneva, Apr. 2009.

[23] ITU-R Rec. BT-1699, “Harmonization of Declarative
Content Format for Interactive TV Applications,” Gene-
va, 2009.

ADDITIONAL READING
[1] ISO/IEC Std. 13818-6, “Information Technology —

Generic Coding of Moving Pictures and Associated
Audio Information — Part 6: Extensions for DSM-CC,”
1998.

BIOGRAPHIES
LUIZ FERNANDO GOMES SOARES (lfgs@inf.puc-rio.br) is a full
professor in the Informatics Department of the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Brazil,

where since 1990 he has headed the TeleMídia Lab. He is a
board member of the Brazilian Internet Steering Commit-
tee and Chair of the Middleware Working Group for the
Brazilian Digital TV System.

MARCIO FERREIRA MORENO (mfmoreno@inf.puc-rio.br)
received his M.Sc. degree from the Informatics Department
of PUC-Rio, Brazil, in April 2006. At present, he is a Ph.D.
student at PUC-Rio and an associate researcher in the
TeleMídia Lab. He has worked on the terrestrial Brazilian
DTV specifications and the Ginga-NCL reference implemen-
tation.

CARLOS DE SALLES SOARES NETO (csalles@inf.puc-rio.br) is an
assistant professor at the Federal University of Maranhão
(UFMA). He received his M.Sc. degree from the Informatics
Department of PUC-Rio in August 2003. At present, he is a
Ph.D. student at PUC-Rio and an associate researcher in the
TeleMídia Lab. He has worked on the terrestrial Brazilian
DTV specifications.

MARCELO FERREIRA MORENO (moreno@inf.puc-rio.br) is an

CALL FOR PAPERS

NETWORK TESTING SERIES

The objective of the Network Testing Series of IEEE Communications Magazine is to provide a forum across the academia and the
industry to address the design and implementation defects unveiled by network testing. In the industry, testing has been a mean to
evaluate the design and implementation of a system. But in the academia, a more common practice is to evaluate a design by mathe-
matical analysis or simulation without actual implementations. A less common practice is to evaluate a design by testing a partial
implementation. That is, the academia focuses more deeply on algorithmic design evaluation while the industry has broader concerns
on both algorithmic design issues and system implementation issues. Often an optimized algorithmic component could not guarantee
the optimal operation of the whole system when other components throttle the overall performance.

This series thus serves as a forum to bridge the gap, where the design or implementation defects found by either community could
be referred by another community. The defects could be found in various dimensions of testing. The type of testing could be function-
ality, performance, conformance, interoperability and stability of the systems under test (SUT) in the lab or in the field. The SUT could
be black-box without source code or binary code, grey-box with binary code or interface, or white-box with source code. For grey-box
or white-box testing, profiling would help to identify and diagnose system bottlenecks. For black-box testing, benchmarking devices of
the same class could reflect the state of the art. The SUT could range from link-layer systems such as Ethernet, WLAN, WiMAX, 3G/4G
cellular, and xDSL, to mid-layer switches and routers, upper-layer systems such as VoIP, SIP signaling, multimedia, network security,
and consumer devices such as handhelds. In summary, the Network Testing Series solicits articles falling in, but not limited to, the fol-
lowing topics:

• Testing functionality, performance, conformance, interoperability, and stability
• Testing systems and services of 10G Ethernet, Power over Ethernet, WLAN, WiMAX, 3G/4G cellular, xDSL, switches, routers, IPv6,
VoIP, SIP signaling, storage area networks, network security, and consumer handhelds
• Testing various layers of network devices including black-boxes, white-boxes, and grey-boxes
• Benchmarking and profiling network systems and services
• Network lab testing and field testing
• Designing network test methodologies, test tools, and test beds
• Evaluating false positive and negative of network security
• Analyzing lab-found and customer-found defects

SUBMISSION

Prospective authors are strongly encouraged to contact the Series Editors before writing and submitting an article in order to
ensure that the article will be appropriate for the Series. The submitted articles should not be published elsewhere or be under review
for any other conference or journal. Articles should be tutorial yet rigorous in nature. Mathematical equations should not be used
(although some simple equations may be allowed if permission is granted by the Series Editor and the Editor-in-Chief). Articles should
not exceed 4500 words. Figures and tables should be limited to a combined total of six. Complete guidelines for prospective authors
can be found at: http://dl.comsoc.org/livepubs/ci1/info/ sub_guidelines.html.

Please send PDF (preferred) or MSWORD formatted papers to Manuscript Central (http://mc.manuscriptcentral.com/ commag-ieee), reg-
ister or log in, and go to the Author Center. Follow the instructions there, and select the topic "Network Testing Series." Since this is a
regular series, papers can be submitted at any time for consideration for subsequent issues.

SCHEDULE

2~3 issues per year with submissions at any time

SERIES EDITORS

Ying-Dar Lin Erica Johnson Tom McBeath

ydlin@cs.nctu.edu.tw erica.johnson@iol.unh.edu Tom.McBeath@spirent.com

National Chiao Tung University University of New Hampshire Spirent Communications Inc., USA

Network Benchmarking Lab (NCTU-NBL), Taiwan InterOperability Lab (UNH-IOL), USA

GOMES SOARES LAYOUT 5/18/10 11:46 AM Page 81

