Wireshark Lab: TCP

Computer Networking: A Top-
Version: 2.0 down Approach, 4" edition.

© 2007 J.F. Kurose, K.W. Ross. All Rights Reserved

In this lab, we’ll investigate the behavior of TCP in detail. We’ll do so by analyzing a
trace of the TCP segments sent and received in transferring a 150KB file (containing the
text of Lewis Carrol’s Alice’s Adventures in Wonderland) from your computer to a
remote server. We’ll study TCP’s use of sequence and acknowledgement numbers for
providing reliable data transfer; we’ll see TCP’s congestion control algorithm — slow start
and congestion avoidance — in action; and we’ll look at TCP’s receiver-advertised flow
control mechanism. We’ll also briefly consider TCP connection setup and we’ll
investigate the performance (throughput and round-trip time) of the TCP connection
between your computer and the server.

Befolre beginning this lab, you’ll probably want to review sections 3.5 and 3.7 in the
text.

1. Capturing a bulk TCP transfer from your computer to a remote
server

Before beginning our exploration of TCP, we’ll need to use Wireshark to obtain a packet
trace of the TCP transfer of a file from your computer to a remote server. You’ll do so by
accessing a Web page that will allow you to enter the name of a file stored on your
computer (which contains the ASCII text of Alice in Wonderland), and then transfer the
file to a Web server using the HTTP POST method (see section 2.2.3 in the text). We're
using the POST method rather than the GET method as we’d like to transfer a large
amount of data from your computer to another computer. Of course, we’ll be running
Wireshark during this time to obtain the trace of the TCP segments sent and received
from your computer.

" All references to the text in this lab are to Computer Networking: A Top-down Approach, 4™ edition.

Do the following:

e Start up your web browser. Go the http://gaia.cs.umass.edu/wireshark-
labs/alice.txt and retrieve an ASCII copy of Alice in Wonderland. Store this file
somewhere on your computer.

e Next goto http://gaia.cs.umass.edu/wireshark-labs/TCP-wireshark-filel.html.

e You should see a screen that looks like:

'_-) Upload page for TCP Wireshark Lab - Mozilla Firefox:
File Edit Vew Go Bookmarks Tools Help

r
<:| - By - @ @ L1 httpeffgaia.cs.umass, edujwireshark-labs TCP-wireshark-file 1. html ¥ @ @v

andrew appel programming - Google Search | | upload page for TCP Wireshark Lab |

Upload page for TCP Wireshark Lab
Computer Networking: A Top Down Approach, 4th edition
Copyright 2007 J F. Kurose and KW, Ross, All Rights Reserved

»

[f you hawve followed the instructions for the TCP Ethersal Lab, you have already downloaded an ASCI copy of Alice and Wanderland from
httprifnaia.cs umass edusthereal-labs/alice bd and you also already have the Wireshark packet sniffer running and capturing packets on
YOUr computer.

Click on the Browse button below to select the directoryfile name for the copy of alice bd that is stored on your computer.

Browse...

Once you have selected the file, click on the "Upload alice bt file" button below. This will cause your browser to send a copy of alice bd over
an HTTP connection {using TCP) to the wieb server at gaia.cs.umass.edu. After clicking on the button, wait until a short message is
displayed indicating the the upload is complete. Then stop your Wireshark packet sniffer - you're ready to begin analyzing the TCP transfer
of alice bt from your computer to gaia.cs.umass.edull

Upload alice i file

& Find: | request (@ Find Mext &) Find Previous [=] Highlight al [] Match case

Done

e Use the Browse button in this form to enter the name of the file (full path name)
on your computer containing Alice in Wonderland (or do so manually). Don’t yet
press the “Upload alice.txt file” button.

e Now start up Wireshark and begin packet capture (Capture->Options) and then
press OK on the Wireshark Packet Capture Options screen (we’ll not need to
select any options here).

e Returning to your browser, press the “Upload alice.txt file” button to upload the
file to the gaia.cs.umass.edu server. Once the file has been uploaded, a short
congratulations message will be displayed in your browser window.

e Stop Wireshark packet capture. Your Wireshark window should look similar to
the window shown below.

L1 {Untitled}) - Wireshark 1P]
File Edit Wew Go Capture Analyze Statistics Help

= BEx %@ 8RB« * » 7 2 BB aaqad
Eilter:| ¥ Expression... Clear Apply
Mo, - Time Source Destination Protocol | Info

0. 046402

j .] . .] Ation or non- HTTF' Tr‘aﬂ'
L128451 L2, http > 1250 [ACK] Seg=1l Ack=514 win=6432 Le
ji L] L] N ontinUation or n HTTE trafft
7] L 1E . JH. . ONtinuUation or non-HTTE tratt
L 214161 o o o o 0 Bo http > 1250 [ACK] Seg=l Ack= 1966 win=8712 L
] - - - tion ar n E
15 .] .] H. 1] .] tion or non-HTTP traftic
298180 o o http > 1250 [AcK] Seq=1 Ack=3418 win=11616
j .] .] j . .] COntInUation or non-HTTR traffic
.38192? o o o o 0 Bo http > 1250 [ACK] Seg=l aAck=4870 win=14520
]]]] Cinuation or n

~

450] L1145 28, 1] .] ONtInUation or non-HTTE tratt

L421386 L2, 2 Mame guery NE MSHOME<lh:>
1% 0.466467 128.119.245.12 152.168.2.145 TCP http > 1250 [ACK] Seg=l aAck=6322 win=17424
20 0.552453 128.1159.245.12 152.168.2.145 TCP http > 1250 [ACK] Seq=1 Ack=7F774 win=20328
2 http > 1250 [: Seq =1 ack= 895? win=23232

9]

9]
0.624375
[:
[

! i . 2 an o LI e

0.708403 5 5 5 5 L2, http > 1250 = Win=2613€
9]
0

. 784139 L2, http > 1250 E win=2904C
. 866343 L2, http > 1250 = = win=31544
na
0. 5 ji L 1E : 2H. .] ONtinuUation or non-HTTE tratt
0.950346 128. . . 192, L2, http > 1250 [] seq=1 Ack=14505 win=32767
32 1.036229 128.119.245.12 192.168.2.145 TCR http > 1250 [ACK] Seq=1 Ack=15957 wWin=32767
33 1.108269 128.119.245.12 1592.168.2.145 TCP http > 1250 [ACK] Seqg=1 Ack=17149 win=32?6?lj

| |
Frame 1 (62 bytes on wire, 62 bytes captured)

Ethernet II, Src: Netgear_6l:8e:6d (00:09:5b:61:8e:6d), Dst: LinksysG_45:90:a8 (00:0c:41:45:90:a8)

Internet Protocol, Src: 192.168.2.145 (192.168.2.1450, Dst: 128.119.245.12 (128.115.245.12)

Transmission Control Protocol, Src Port: 1250 (12500, Dst Port: http (80), Seq: 0, Len: O

0000 00 0c 41 45 S0 a8 00 0% 5h 61 8e &d OB 00 45 00 L. AE. ... [a.m..E.
0010 00 30 2Zb &b 40 00 B0 06 95 9F <0 aB 02 91 8O 77 LO+kBL L. L w
0020 5 0c 04 e2 00 50 <2 67 22 99 00 00 00 00 FO 02 Pog Mo p.
o030 ff £f 60 2f 00 00 02 04 05 b4 01 01 04 02 Do //onon nooooo

File: "C:DOCUME~11PAULAW-~1LOCALS~11 Templetherikxa03100" 165 KB 00:00:09 | P 214 Dt 214 M: 0 Drops: 0

If you are unable to run Wireshark on a live network connection, you can download a
packet trace file that was captured while following the steps above on one of the author’s
computers”. You may well find it valuable to download this trace even if you’ve
captured your own trace and use it, as well as your own trace, when you explore the
questions below.

* Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file tcp-
ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s
computers, while performing the steps indicated in the Wireshark lab. Once you have downloaded the
trace, you can load it into Wireshark and view the trace using the File pull down menu, choosing Open, and
then selecting the tcp-ethereal-trace-1 trace file.

2. Afirst look at the captured trace

Before analyzing the behavior of the TCP connection in detail, let’s take a high level
view of the trace.
o First, filter the packets displayed in the Wireshark window by entering “tcp”
(lowercase, no quotes, and don’t forget to press return after entering!) into the
display filter specification window towards the top of the Wireshark window.

What you should see is series of TCP and HTTP messages between your computer and
gaia.cs.umass.edu. You should see the initial three-way handshake containing a SYN
message. You should see an HTTP POST message and a series of “HTTP Continuation”
messages being sent from your computer to gaia.cs.umass.edu. Recall from our
discussion in the earlier HTTP Wireshark lab, that is no such thing as an HTTP
Continuation message — this is Wireshark’s way of indicating that there are multiple TCP
segments being used to carry a single HTTP message. You should also see TCP ACK
segments being returned from gaia.cs.umass.edu to your computer.

Answer the following questions, by opening the Wireshark captured packet file tcp-
ethereal-trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip (that is
download the trace and open that trace in Wireshark; see footnote 2). Whenever possible,
when answering a question you should hand in a printout of the packet(s) within the trace
that you used to answer the question asked. Annotate the printout to explain your
answer. To print a packet, use File->Print, choose Selected packet only, choose Packet
summary line, and select the minimum amount of packet detail that you need to answer
the question.

1. What is the IP address and TCP port number used by the client computer (source)
that is transferring the file to gaia.cs.umass.edu? To answer this question, it’s
probably easiest to select an HTTP message and explore the details of the TCP
packet used to carry this HTTP message, using the “details of the selected packet
header window” (refer to Figure 2 in the “Getting Started with Wireshark™ Lab if
you’re uncertain about the Wireshark windows).

2. What is the IP address of gaia.cs.umass.edu? On what port number is it sending
and receiving TCP segments for this connection?

If you have been able to create your own trace, answer the following question:
3. What is the IP address and TCP port number used by your client computer
(source) to transfer the file to gaia.cs.umass.edu?

Since this lab is about TCP rather than HTTP, let’s change Wireshark’s “listing of
captured packets” window so that it shows information about the TCP segments
containing the HTTP messages, rather than about the HTTP messages. To have
Wireshark do this, select Analyze->Enabled Protocols. Then uncheck the HTTP box and
select OK. You should now see an Wireshark window that looks like:

1l tcp-ethereal-trace-1 - Wireshark =] 3

File Edit Wew Go Capture Analyze Statistics Help
=Y @ x % 85 B e o 237 8 | BE &aan|
Eilker: | ¥ Expression... Clear Apply
Mo, - |Time |Source |Destinati0n |Pr0t0c0| |InF0 e
1 0.000000 1%2.168.1. 128.119.245.12 TCP 1161 > http [S¥N] Seq=0 Len=0 MSS=1460
2 0,023172 128.115. 1%2.168.1.102 TCP http > 1161 [S¥N, ACK] Seq=0 Ack=1 win=584(
3 0.023265 1%2.168.1. 128.119.245.12 TCP 1161 > http [ACK] Seg=l Ack=1l win=17520 Ler
4 0.026477 1%2.168.1. 128.11%9.245.12 TCP 1161 > http [PSH, ACK] Seg=l Ack=1l win=175:
50 .119. TCP 1161 > http [PSH, ACK] Seq=566 Ack=1 win=1.
6 0 By

TCR http > 1161 [ACK] Seq=1 Ack=566 win=56780 L¢

w1 =1 2]

45.12 Win=17520

B se 486

9 0,077294 192.168.1.102 TCR http > 1161 [ACK] Seq=1 Ack=2026 win=8760
10 0.077405 128.119,245.12 TCR 1161 > http [ACK] Seq=4946 Ack=l win=17520
11 0.078157 128.119,245.12 TCR 1161 > http [ACK] Seq=6406 Ack=l win=17520
12 0.124085 192.168.1.102 TCR http > 1161 [ACK] Seq=1 Ack=3486 win=11630
13 0.124185 128.119,245.12 TCR 1161 > http [PSH, ACK] Seq=7866 Ack=1l win=
14 0.169118 128.119,245.12 192.168.1.102 TCR http > 1161 [ACK] Seq=1 Ack=4946 win=14600
15 0.217299 128.119,245.12 192.168.1.102 TCR http > 1161 [ACK] Seq=1 Ack=56406 win=17520
16 0. 267802 128.119,245.12 192.168,1.102 TCR htto >

1161 [ack] Sen=1 Ack=7866 win=20440 |
| |
Frame 7 (1514 bytes on wire, 1514 bytes captured)
® Ethernet II, Src: Actionte_8a:70:la (00:20:e0:8a:70:1a), Dst: Linksysa_da:af:73 (00:06:25:da:af:73)
Internet Protocol, Src: 192.168.1.102 ¢192.168.1.1020, Dst: 128.119.245.12 (128.1159.245.12)
= Transmission Control Protocol, Src Port: 1161 (11610, Dst Port: http (80), Seq: 2026, ack: 1, Len: 1460

Source port: 1161 (11610
pestination port: http (80)

sequence number: 2026 (relative sequence number)
[Mext seguence number: 3486 (relative seguence number)]
Acknowledgement number: 1 frelative ack number)

Header Tlength: 20 bytes
E Flags: 0x10 CACK)

0.0 e = Congestion window Reduced (CwR): Mot set

I = ECM-Echo: Mot set

R ()i = Urgent: MOt set

...l = Acknowledogment: Set =l
il I H
0000 00 06 25 da af ¥3 00 20 e0 8a Y0 1la 08 00 45 00 .%o 5. ..p...E. ﬁ’
0010 05 do le 23 40 00 80 06 of 66 <D a8 01 66 80 77 S - T R
0020 5 0c 04 89 00 50 0d d6 09 de 34 a2 74 1la 50 10 P - R
0030 44 70 b9 8e 00 00 0d 0a oOd 0a 57 65 20 61 72 &5 B8 e aa 00 aa we are
0040 20 6e 6F 77 20 74 F2 79 69 Ge 67 20 74 6F 20 72 now try ing to r
[aTal-Nal B Ee~ R0 = e T S T i | F- Ee- 0 EF FEOTFIOI0 G LR N e e TR Y ;I
File: “C:iDocuments and SettingsiPaula WingiMy DocumentsiWiresharkitraces - ethereal... | Pi 213D 213M: 0 4

This is what we’re looking for - a series of TCP segments sent between your computer
and gaia.cs.umass.edu. We will use the packet trace that you have captured (and/or the
packet trace tcp-ethereal-trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-
traces.zip; see footnote 2) to study TCP behavior in the rest of this lab.

3. TCP Basics

Answer the following questions for the TCP segments:

4. What is the sequence number of the TCP SYN segment that is used to initiate the
TCP connection between the client computer and gaia.cs.umass.edu? What is it
in the segment that identifies the segment as a SYN segment?

5. What is the sequence number of the SYNACK segment sent by gaia.cs.umass.edu
to the client computer in reply to the SYN? What is the value of the
ACKnowledgement field in the SYNACK segment? How did gaia.cs.umass.edu
determine that value? What is it in the segment that identifies the segment as a
SYNACK segment?

6. What is the sequence number of the TCP segment containing the HTTP POST
command? Note that in order to find the POST command, you’ll need to dig into
the packet content field at the bottom of the Wireshark window, looking for a
segment with a “POST” within its DATA field.

7. Consider the TCP segment containing the HTTP POST as the first segment in the

TCP connection. What are the sequence numbers of the first six segments in the

TCP connection (including the segment containing the HTTP POST)? At what

time was each segment sent? When was the ACK for each segment received?

Given the difference between when each TCP segment was sent, and when its

acknowledgement was received, what is the RTT value for each of the six

segments? What is the EstimatedRTT value (see page 249 in text) after the
receipt of each ACK? Assume that the value of the EstimatedRTT is equal to
the measured RTT for the first segment, and then is computed using the

EstimatedRTT equation on page 249 for all subsequent segments.

Note: Wireshark has a nice feature that allows you to plot the RTT for
each of the TCP segments sent. Select a TCP segment in the “listing of
captured packets” window that is being sent from the client to the
gaia.cs.umass.edu server. Then select: Statistics->TCP Stream Graph-
>Round Trip Time Graph.

What is the length of each of the first six TCP segments?’

9. What is the minimum amount of available buffer space advertised at the received
for the entire trace? Does the lack of receiver buffer space ever throttle the
sender?

10. Are there any retransmitted segments in the trace file? What did you check for (in
the trace) in order to answer this question?

11. How much data does the receiver typically acknowledge in an ACK? Can you
identify cases where the receiver is ACKing every other received segment (see
Table 3.2 on page 257 in the text).

12. What is the throughput (bytes transferred per unit time) for the TCP connection?
Explain how you calculated this value.

*®

3 The TCP segments in the tcp-ethereal-trace-1 trace file are all less that 1460 bytes. This is because the
computer on which the trace was gathered has an Ethernet card that limits the length of the maximum IP
packet to 1500 bytes (40 bytes of TCP/IP header data and 1460 bytes of TCP payload). This 1500 byte
value is the standard maximum length allowed by Ethernet. If your trace indicates a TCP length greater
than 1500 bytes, and your computer is using an Ethernet connection, then Wireshark is reporting the wrong
TCP segment length; it will likely also show only one large TCP segment rather than multiple smaller
segments. Your computer is indeed probably sending multiple smaller segments, as indicated by the ACKs
it receives. This inconsistency in report edsegment lengths is due to the interaction between the Ethernet
driver and the Wireshark software. We recommend that if you have this inconsistency, that you perform
this lab using the provided trace file.

4. TCP congestion control in action

Let’s now examine the amount of data sent per unit time from the client to the server.
Rather than (tediously!) calculating this from the raw data in the Wireshark window,
we’ll use one of Wireshark’s TCP graphing utilities - Time-Sequence-Graph(Stevens) - to
plot out data.

e Select a TCP segment in the Wireshark’s “listing of captured-packets” window.
Then select the menu : Statistics->TCP Stream Graph-> Time-Sequence-
Graph(Stevens). You should see a plot that looks similar to the following plot,
which was created from the captured packets in the packet trace tcp-ethereal-
trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip (see
footnote 2):

%! TCP Graph 8: tcp-ethereal-trace-1 192.168.1.102:1161 -> 128.119

Sequence

number[E] Time,Sequence Graph

150000 —

100000 —

3
TTTT

II\IIIIIII\IIIIIIIII\IIIIIIIIII\IIII|IIII|I
0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5

Time[s]

Here, each dot represents a TCP segment sent, plotting the sequence number of
the segment versus the time at which it was sent. Note that a set of dots stacked
above each other represents a series of packets that were sent back-to-back by the
sender.

Answer the following questions for the TCP segments the packet trace tcp-ethereal-
trace-1 in http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip
13. Use the Time-Sequence-Graph(Stevens) plotting tool to view the sequence
number versus time plot of segments being sent from the client to the
gaia.cs.umass.edu server. Can you identify where TCP’s slowstart phase begins
and ends, and where congestion avoidance takes over? Comment on ways in
which the measured data differs from the idealized behavior of TCP that we’ve
studied in the text.
14. Answer each of two questions above for the trace that you have gathered when
you transferred a file from your computer to gaia.cs.umass.edu

