A communication framework for ubiquitous systems *

Marcio E. F. Maia'?3, Saulo Aguiar®, Bruno Gois Mateus®, Carlos Queiroz?,
Reinaldo B. Braga®, Rute Nogueira®, Fredrik Toorn*, Rossana M. C. Andrade®*

!Campus de Quixada — Universidade Federal do Ceara (UFC)
Estrada do Cedro - km 05. CEP 63900-000 - Quixadé - CE — Brazil

2Departmento de Ciencia da Computacao, Universidade Federal do Ceara (UFC)
Campus do Pici - Bloco 910 - Fortaleza - CE — Brazil

3Grupo de Redes de Computadores, Engenharia de Software e Sistemas
Universidade Federal do Ceara — Fortaleza, CE — Brazil

4Sony Mobile
{marcio, brung, sauloaguiar, carlosqueiroz, reinaldo, rutenp, rossana}@great .ufc.br,

Fredrik.Toorn@sonymobile.com

Abstract. The widespread use of mobile devices is reshaping the way users in-
teract, permitting applications to explore physical proximity of devices to ex-
change information. Altough the number of communication technologies that
can be used is vast (e.g. Wi-Fi, Wi-Fi Direct, LTE, UMTS, Bluetooth, NFC), bui-
liding an application from ground up considering communication and applica-
tion requirements is not a trivial task. In order to help developers to implement
communication primitives, this paper presents a communication framework for
ubiquitous systems. Two important contributions are related to our framework:
i) a set of technology-independent interfaces to handle communication require-
ments, and ii) a modular and extensible layer-based architecture that permits
developers to implement new communication technologies and message dissem-
ination strategies. The outcome of using our communication framework is a
simpler construction of distributed applications that explore physical proximity.

1. Introduction

The use of mobile devices and the proliferation of Location Based Services (LBS) on
the Internet are fostering a whole new interaction paradigm. Acquaintances exchange
messages, multimedia content and information in a near real-time basis [Mascolo 2010],
anywhere and anytime.

Services based on the user location have been widely adopted as the key char-
acteristic to provide enriched information for mobile applications in ubiquitous en-
vironments [Bragaetal. 2012]. For instance, proximity has been used to diffuse
context information with nearby devices, a concept known as participatory sensing
[Mascolo 2010, MAIA et al. 2013]]. Another possibility is to explore user mobility and
proximity to carry-and-forward short messages, which is known as opportunistic comput-
ing [Conti et al. 2010].

*This work is funded by MCT/Informatics Law under project grant number 2951

In these scenarios, the interacting mobile devices may be distributed and pervaded
throughout the environment. Therefore, communication is performed using direct com-
munication technologies such as Bluetoot and Wi-Fi Direc allowing the communica-
tion without an existing infrastructure.

Although these technologies and LBS are useful to create ubiquitous applications,
the design of a modular and extensible communication infrastructure is a challenging
task. Nowadays, developers must consider basic issues such as neighbor discover and se-
lection, message exchange, device disconnection and routing to develop ubiquitous appli-
cations [Drabkin et al. 2011]]. However, to facilitate this development, this paper presents
a communication framework that aids developers to create applications through the use of
direct communication. The framework is divided into layers. The lower layers are related
to the link discovering and communication technology (e.g., link and physical layers).
These layers handle the creation and destruction of links between two devices, and of-
fers to developers primitives such as neighbor discovery, message exchange and device
disconnection. Hence, the framework is able to handle communication among different
technologies, such as Bluetooth, Wi-Fi, and Wi-Fi Direct.

The independence of using different communication technologies is possible due
to the network layer, which reuses primitives from the lower layers to send, forward and
receive messages. This layer is conceived to allow the implementation of new routing
algorithms. Reusing the primitives offered by the lower layers, the upper layers offer to
applications communication primitives.

The remainder of this paper is divided as follows. Section 2 discusses important
issues to develop ubiquitous applications. Section 3 presents the communication frame-
work. Section 4 details how the framework can be used and extended. Section 5 presents
related work and section 6 lists some conclusions.

2. Exploring device proximity

According to the authors of [Maia et al. 2009]], communication among nearby devices is
at the core of ubiquitous computing. Direct communication allows devices to exchange
messages when a fixed infrastructure is unavailable. Taking into account the information
about physical proximity, other devices can be used to carry and forward messages when
direct exchange is not possible. Along this line, developers use technologies such as Blue-
tooth or Wi-Fi Direct to implement the communication processes of their applications.

Approaches that rely on direct communication like mobile ad-hoc
networks (MANET) [Sarkar and Lol 2010], delay-tolerant networks (DTN)
[Whitbeck and Conan 2010] and opportunistic computing (OC) [Conti et al. 2010]
have been subject of study in the last decade. They allow the communication without a
pre-defined infrastructure and can be efficiently implemented in ubiquitous environments.
Besides that, other characteristics should be considered in ubiquitous environments, such
as: no assumption about the topology of nodes should be made; nodes have to forward
messages to other nodes in a collaborative way; and nodes may be mobile.

Although MANET, DTN and OC have been extensively studied, they are not thor-

lwww.bluetooth.com

“http://www.wi-fi.org/discover-and-learn/wi-fi-direct

oughly explored in real applications. In order to diffuse their use, general purpose solu-
tions to handle direct communication could provide valuable contributions.

3. Communication framework for ubiquitous computing

In order to foster the creation of ubiquitous applications relying on direct communica-
tion, this paper presents a ubiquitous communication framework. Its main contribution is
two-fold: 1) it offers a set of technology-independent interfaces to handle communication
requirements such as neighbor discovery, connection and disconnection, and message de-
livery; 2) it is based on a modular and extensible, layer-based, architecture that permits
developers to plug in new communication technologies and message dissemination strate-
gies, reusing much of the existing functionalities.

Our communication framework is based on the conceptual architecture introduced
in [[Conti et al. 2010]. We then bring these concepts to apply in real ubiquitous scenar-
10s, facilitating the construction of applications that explore physical proximity. Up to
this point, the framework has implemented communication using Bluetooth and Wi-Fi,
and two well-known routing algorithms that can handle multi-hop, namely AODV and
Flooding.

Implemented using Androicﬂ messages exchanged between devices are described
using JSON (Java Script Object Notation) EI, a lightweight data exchange format to fos-
ter interoperability between interacting devices. Binaries and a series of documents de-
scribing its use are available at the following link: http://r2d2.great.ufc.br/
dokuwiki/doku.php?id=bluetoothnetwork:bluetooth_networkl

The framework is divided into three layers, trying to improve modularity and ex-
tensibility. Therefore, any layer can be adapted or modified acording to implementation
requirements. The bottom layer handles the functionalities specific to the communication
technologies. The middle layer uses the primitives from the bottom layer and implements
routing functionalities. The top layer reuses the functionalities from the two previous
layers, and lets applications send messages. Figure 1 shows the architecture of the frame-
work, detailed as follows.

Application j -
Layer s /_
—~

/) [Laopv
Network 0 iger) Routor v~ .
Layer | J P -
—— [Flooding
P

{ | Communicable

Connect-aware rvice) (WifiDirectNetwor

Layer L ‘

Figure 1. Architecture of the proposed framework

3.1. Connect-aware layer

This layer is responsible for handling the direct communication between two devices. The
main features implemented in this layer are 1) Connectivity management, 2) Neighbor

3http://www.android.com/
“www.json.org

http://r2d2.great.ufc.br/dokuwiki/doku.php?id=bluetoothnetwork:bluetooth_network
http://r2d2.great.ufc.br/dokuwiki/doku.php?id=bluetoothnetwork:bluetooth_network

discovery and connection, 3) Message exchange and 4) Neighbor disconnection. These
features are exposed to the upper layers as interfaces.

Since devices are mobile, they may enter and leave on the network unpredictably.
The goal of the connectivity management is to keep the network connected, trying to
maintain a path between any two devices.

Bluetooth. This technology has particularities that needed to be addressed. One is
the restriction on the number of devices connected to each device. This restriction affects
directly the connectivity management, since one device should consider carefully before
connecting to a given neighbor, or it may run out of available connections. This problem
has been analyzed before [Sharafeddine et al. 2012] and is called scatternet formation.

To minimize the load on each device, connectivity management is implemented
using a simple scatternet formation strategy. Due to the restriction on the number of
connections, this strategy instead of connecting to every known neighbor, and quickly
saturating the number of connections, it uses the concept of redundant link.

A link is redudant when it can be removed and the network still remains fully
connected. To define if a link to a new neighbor is redundant, once two devices meet,
called device A and device B, they exchange their list of neighbors. If the list received by
device A from device B contains at least one device already present in the list of neighbors
from device A, the link between devices A and B is defined as a redundant link.

Before connecting to a device, the redundant link algorithm is used and the number
of free connections that a device has is considered. If it has less than five connections,
it will just connect to the new device. If it has five or more connections, it will check if
there is any redundant link. If there is a redundant link, this link is removed and the new
connection is added. If the number of connections is equal to seven, the new connection
cannot be created. The number of five connections was defined analyzing the geometry
created by devices communicating wirelessly.

Once a connected neighbor disconnects, one of two possible actions is taken. If the
link was a redundant one, the redundant link list is updated to consider this disconnection.
If the link was not a redundant one, the neighborhood is scanned looking for devices that
could replace this neighbor that left.

=<<interface=>=
BluetoothEventslListener

+ onNotNeighborDeviceFound(deviceName : String, deviceAddress : int) : void
+ onStateScanModeChanged|state : int, previousState : int) : void

+ onStateObersvingChanged(state : int, previousState : int) : void

+ onStateDiscoveryChanfed(action : String) : void

+ onsStateChanged(state : int, previousState : int) : void

BluetoothC

+ onstart() : void
+ onStop() : void
T Y

: Routing ge) : void
: Routing ge, dAddress : String) : void

r
+ sendBroadcast gelmessag:
+ connect(neighbor : String) : void
+ getMyAddress() : 5tring

Figure 2. Interfaces exposed by the Bluetooth communication module

Figure 2 shows the interfaces that are exposed by the lower layer. There are two
sets of functionalities. One set handles events occurring in the Bluetooth module, such as
neighbor found or changes on the observing state. The second acts upon communication
technology modules, responsible for device connection, disconnection, sending messages,

starting and stopping the module.

Using Wi-Fi and Wi-Fi Direct, this restriction on the number of connections can
be relaxed. The framework already has an implementation using regurlar Wi-Fi. Wi-Fi
Direct has details that deserve more attention and shall be considered in the future.

Wi-Fi. Unlike Bluetooth, that employs direct communication between neighbor
devices, Wi-Fi permits that any two devices connected to an access point in the same
subnetwork to communicate. The goal is to provide to the upper layers the same interfaces
present in the Bluetooth module, but abstracting away what is specific from Wi-Fi. The
Wi-Fi implementation relies on a network port monitor, where all events are received
using that port (e.g. device connection and disconnection, message received). When a
device needs to send a message, it wraps the message up on an UDP datagram and sends
it to its network broadcast address, using the predefined network port. Other devices in the
network receive the broadcasted message in the same predefined port, unwraps it pushs it
to the upper layers throught network listeners and specific interfaces.

3.2. Network layer

Using the interfaces from the contact-aware layer, the network layer is responsible for
routing messages. One important thing that must be highlighted is that the contact-aware
layer only send 1-hop messages to nearby devices. The network layer routes messages
using all technologies available from the contact-aware layer. The framework provides
implementations for two routing algorithms, namely AODV and Flooding.

The network layer permits communication among devices that are not within com-
munication range. Since no suposition about a centralized routing service should be
made, messages are sent using multi-hop [Sarkar and Lol 2010, IConti et al. 2010]. De-
vices forming the network are responsible for forwarding messages.

Independently of the routing mechanism, each hop (device) decides how to send
a message to the next hop based on the metric defined by the routing protocol. Thus, all
a routing algorithm requires from the communication layer is the list of active neighbors,
how to send a message using unicast or broadcast, and how to receive a message.

These are precisely the functionalities offered by the lower layer. Reusing them,
the framework allows different routing algorithms to be implemented on top of the com-
munication layer. Figure 3 shows the core interfaces and design of the network layer.

NetwokContainer

+ getinstace() : NetworkContainer

+ activeNetworks() : void

+ send! I : Routing!) boolean

+ sendBrodcastl I : Routingt)¢ Routing!
+ getMyAddresses() : List<String>
+ addNetwork{network : Communicable) : void

7
Use [Router] [Rocerver |
- of |

<

1
——
il I
AODV 1 Flooding
I | I
—1 | ——

kv

=<interface==
MessageEventListener

+ onMessageRecelved(message : RoutingMessage) : void

Figure 3. Interfaces exposed by the network Layer to the application layer

Messages coming from the contact-aware layer are delivered to the Router class
by the MessageEventListener interface, using the onMessageReceived(Message) method.

The Router class implements this interface and it is the actual routing algorithm.
This is the base class for implementing a new routing strategy. This framework of-
fers to developers two implementations of well-known routing algorithms: Flooding
[Viswanath and Obraczka 2006] and AODV [Perkins and Royer 1997].

If the routing algorithm decides to forward a message to a neighbor device, it
queues the message using the Sender class by calling the queueDataMessage(Message)
method, informing the next hop. Since the framework permits to route messages using
different technologies, when the NetworkContainer class receives a message to be sent,
it first decides, based on the destination of the message informed by the router, which
communication technology should be used. The class NetworkContainer then selects the
communication technology and sends the message using the sendMessage method.

To implement a different routing algorithm, the developer would only have to
implement the Router class. All the functionalities regarding neighbor discovery and
selection as well as message delivery process in the contact-aware layer are offered by
the framework and can be reused. This approach reduces considerably the complexity to
develop a new routing algorithm.

3.3. Application layer

One instance of the communication framework is deployed per device. To send a message,
an application uses the interface provided by the framework, listed in figure 4, in the
NetworkManager class. Additionally, when a message addressed to an application arrives,
the listener class NetworkEventListener notifies the application. The application may be
notified of other events, such as device found or device disconnected, as well.

<<interface=>>
NetworkEventListener

+ onReceiveMessage(deviceAddress : String, message : Parcelable) : void
+ onDeviceConnected(deviceAddress : String) : void

+ onDeviceDisconnected(deviceAddress : String) : void

+ onDeviceFound(deviceAddress ; String) ; void

+ onExceptionOccurred(cede : int, message : String) : void

+ onNetNeigherFound(deviceAddress : String) ; veid

+ onStateConnectionChanged(state : int, previousState : int) : void

NetworkManager

+ sendMessage(message : Parcelable, destination : String) : void
+ sendMessage(message : Parcelable, destinations : Set<String=>) : void
+ sendBroadcastMessage(message : Parcelable) : void

Figure 4. Interfaces exposed by the network layer to the application layer

The framework has two main contributions: 1) It provides primitives so devel-
opers can create novel solutions to improve the communication among nearby devices,
without relying on a physical infrastructure; and 2) It offers a communication infrastruc-
ture implementing two existing communication technologies (e.g., Bluetooth and Wi-Fi)
and two routing algorithms (e.g., Flooding and AODV).

The two first layers (contact-aware and network) present extension points which
developers can explore. The contact-aware layer can be extended by adding new commu-
nication technologies, such as Wi-Fi Direct or 3G, or can be changed to offer different
implementations of Bluetooth and Wi-Fi. The network layer can be extended by adding
any existing routing approaches or by developing new solutions.

A different communication module can be implemented by extending the Com-
municable interface, similarly to what was done by the BluetoothCommunicable class. A
similar class called EventsListener should be created and made available in the frame-
work to the application developer. Please refer to figure 4 for more details. Finally, the
new communication technology should handle device discovery and connection, unicast
and broadcast message delivery, device disconnection, along with any other functionality
offered by the EventsListener interface, according to the publish/subscribe pattern. Any
new communication technology has to subscribe in the NetworkContainer class, then
messages are routed to devices using this new technology.

As mentioned before, new routing algorithms may be implemented as well. Since
these algorithms should decide when and to whom messages should be forwarded to, the
complexity lies on the algorithms themselves. From the perspective of the framework, any
routing algorithm basically sends and receives messages using the Sender and Receiver
classes. All the complexity regarding the technology itself is abstracted away from the
routing algorithm developer.

The framework is intended to be used by developers of android applications that
require direct communication among nearby users. To use the communication function-
alities the application developer should create an instance of the NetworkManager class,
passing the android.context. Context class from Android, along with an implementation of
the NetworkEventListener callback interface, to be notified when a network event occurs.
This code should be put in the onCreate() method of the activity.

The next step is to invoke the onResume() method on the NetworkManager in-
stance. It starts all communication technologies and the network layer. With the im-
plementation of the NetworkEventListener interface, the application is notified of events
occurring on the network, such as device connection or message received. It is up to the
application developer to decide what should be done when these events occur. Finally, an
application may send messages by simply calling sendMessage(Message, destinationAd-
dress) or sendBroadcastMessage(Message) methods.

4. Proof of concept

To validate the concepts proposed in this paper, a proof of concept was developed putting
together the communication framework and the framework to interact with existing OSN
[Maia et al. 2012]. The idea is to share opinions between different communication tech-
nologies, post them in the social networks and retrieve the average opinion of the users.

Figure 5. Sharing a tag with nearby devices

Figure 5 shows three screenshots of the application. The first phone, on the right
hand side, shows user A rating a McDonald’s restaurant he had just eaten in. McDonald’s
is selected from a list of places accessed from Facebook. After selecting it, the user
chooses the properties that are going to be rated and informs the value referring to each

property.

The next step is to share that opinion. It may be posted on Facebook or shared with
devices nearby. Once the user chooses to share with nearby devices and sends the opinion
content, user B receives a notification on his phone (figure 5, middle phone) letting him
know that a new opinion is available. Clicking on the notification icon, opinion is showed.

Figure 6 shows a code snippet extracted from the application. It is divided in three
parts: framework initiation, message broadcast and message receive. First, every com-
municating device must initiate the framework. They do so by executing the onResume()
method from the NetworkManager (lines 2-5). Once the framework is initiated, device A
broacasts a message to all known devices, using any available technology (lines 7-10, on
the left). Before the message is sent, its content is parsed to JSON. Notice that activities
related to each technology (Wi-FI, Bluetooth), neighbor selection in each technology and
routing is performed by the layers implemented in the framework. Finally, for an appli-
cation to be notified of an incoming message, it must implement the onReceiveMessage()
method from the NetworkManagerClass (lines 9-11, on the right).

1
2= //Both devices execute initiation activities
mMessagelistener = new MessagelistenerImpl(mContext);

mNetworkManager = new Networ (mContext, mM Listener);
5 mNetworkManager.onResume();

//Device A sending a broadcast messsage //Device B receiving a network message
.setl geType(Conceptl ge . SHARING) ; public void onReceiveMessage(String deviceName, String deviceAddress, Parcelable message) {
JSONObject object = putConceptsIntoJSONQ); ConceptMessage received = (ConceptMessage) message;
1 message.setRatings(object.toString()); createNotification(received);
11 1
mNetworkManager . sendBroadcastl DK

Figure 6. Framework initiation, message broadcast and receive

Notice how the application only uses methods exposed by the framework to handle
communication activities. Any functionality regarding communication technology and
routing is handled exclusively by the framework. This modular approach hides away the
comlexities related to device communication.

5. Related Work

Flock [Boix et al. 2011]] is an abstraction to represent user groups in mobile social sce-
narios, offering to developers primities to define groups at runtime, fostering interaction
among nearby users. The difference is that they do not give much attention to communi-
cation mechanisms. In a way, our communication framework could be used by them to
create the interaction infrastructure and group communication.

AmbientTalk [Suzuki et al. 2011] is a object-oriented programming language
aimmed at peer-to-peer mobile applications. Focusing on the application layer, it offers
distributed programming primitives such as events, services and concurrency. Interaction
between devices is accomplished based on massage-passing. AmbientTalk and our com-
munication framework could be placed together to offer full-fledged coordination stack
for peer-to-peer mobile applications.

Mobiclique [Pietildinen et al. 2009] is a mobile social networking middleware that
exploits ad hoc social networks to disseminate content, using on opportunistic connec-
tions between neighboring devices. They offer an environment to deploy and test the
performance of opportunistic forwarding algorithms which leverage the social profiles
and networks of users, as it monitors at the same time their mobility and social behavior.
Similarly, our framework permit interactions between nearby users, however, focusing on
reusability and extensibility of layers and modules present in the communication infras-
tructure.

6. Conclusions and Future Work

This paper presented a communication framework to facilitate the development of direct
communication among devices, as well as to permit new communication technologies
and routing algorithms to be added. The framework was designed aiming at two basic
goals: 1) to be independent of any communication technology and routing algorithm; 2)
to be as modular and extensible as possible. These goals were accomplished by separat-
ing the functionalities into layers and modules, communicating using publish/subscribe
mechanisms.

The framework was divided in three layers. The lower layer comprises the dif-
ferent communication technologies. It has implementations to Bluetooth and Wi-Fi tech-
nologies. Reusing these modules, the network layer is responsible for delivering messages
using multi-hop. To do so, it has implemented Flooding and AODYV, offering to applica-
tion developers two routing algorithms. Finally, on the upper layer, application developers
may use the interfaces exposed by the lower layers to send and receive messages among
nearby devices.

As a future work, a detailed performance analysis should be carried out. The ideia
is to analyze how the framework behaves as parameters such as the number of messages,
number of devices and mobility affects metrics like the percentage of messages delivered,
delivery latency and round trip time.

References

[Altundag and Gokturk 2006] Altundag, S. and Gokturk, M. (2006). A practical approach
to scatternet formation and routing on bluetooth. In Computer Networks, 2006 Inter-
national Symposium on, pages 23 -29.

[Boix et al. 2011] Boix, E. G., Carreton, A. L., Scholliers, C., Van Cutsem, T., De Meuter,
W., and D’Hondt, T. (2011). Flocks: enabling dynamic group interactions in mobile
social networking applications. In Proceedings of the 2011 ACM Symposium on Ap-
plied Computing, SAC 11, pages 425432, New York, NY, USA. ACM.

[Braga et al. 2012] Braga, R. B., Tahir, A., Bertolotto, M., and Martin, H. (2012). Clustering
user trajectories to find patterns for social interaction applications. In Proceedings
of the 11th international conference on Web and Wireless Geographical Information
Systems, W2GIS’ 12, pages 82-97, Berlin, Heidelberg. Springer-Verlag.

[Conti et al. 2010] Conti, M., Giordano, S., May, M., and Passarella, A. (2010). From
opportunistic networks to opportunistic computing. = Communication Magazine,
48(9):126-139.

[Drabkin et al. 2011] Drabkin, V., Friedman, R., Kliot, G., and Segal, M. (2011). On reliable
dissemination in wireless ad hoc networks. Dependable and Secure Computing, IEEE
Transactions on, 8(6):866 —882.

[Maia et al. 2009] Maia, M. E., Rocha, L. S., and Andrade, R. M. (2009). Requirements and
challenges for building service-oriented pervasive middleware. In Proceedings of the
2009 international conference on Pervasive services, ICPS °09, pages 93—-102, New
York, NY, USA. ACM.

[Maia et al. 2012] Maia, M. E. F,, Filho, J. B. E,, de Q. Filho, C. A. B., Castro, R. N. S.,
Andrade, R. M. C., and Toorn, F. (2012). Framework for building intelligent mobile
social applications. In SAC ’12: Proceedings of the 27th Annual ACM Symposium on
Applied Computing, pages 525-530, New York, NY, USA. ACM.

[MAIA et al. 2013] Maia, M. E. F,, Fonteles, A. S., Gadelha, R., Almeida Neto, B. J., Viana,
W., and Andrade, R. M. C. (2013). Loccam - loosely coupled context acquisition
middleware. In Proceddings of the 28th Symposium on Applied Computing, SAC’13,
pages 82-97, New York, NY, USA. ACM.

[Mascolo 2010] Mascolo, C. (2010). The power of mobile computing in a social era. Inter-
net Computing, IEEE, 14(6):76 —79.

[Perkins and Royer 1997] Perkins, C. E. and Royer, E. M. (1997). Ad-hoc on-demand dis-
tance vector routing. In In Proceedings of the 2nd IEEE Workshop on Mobile Comput-
ing Systems and Applications, pages 90-100.

[Pietildinen et al. 2009] Pietildinen, A.-K., Oliver, E., LeBrun, J., Varghese, G., and Diot, C.
(2009). Mobiclique: middleware for mobile social networking. In Proceedings of the
2nd ACM workshop on Online social networks, WOSN ’09, pages 49-54, New York,
NY, USA. ACM.

[Sarkar and Lol 2010] Sarkar, N. I. and Lol, W. G. (2010). A study of manet routing proto-
cols: Joint node density, packet length and mobility. In Computers and Communica-
tions (ISCC), 2010 IEEE Symposium on, pages 515 -520.

[Sharafeddine et al. 2012] Sharafeddine, S., Al-Kassem, 1., and Dawy, Z. (2012). A scat-
ternet formation algorithm for bluetooth networks with a non-uniform distribution of
devices. J. Netw. Comput. Appl., 35(2):644—656.

[Suzuki et al. 2011] Suzuki, T., Pinte, K., Van Cutsem, T., De Meuter, W., and Yonezawa,
A. (2011). Programming language support for routing in pervasive networks. In Perva-
sive Computing and Communications Workshops (PERCOM Workshops), 2011 IEEE
International Conference on, pages 226-232.

[Viswanath and Obraczka 2006] Viswanath, K. and Obraczka, K. (2006). Modeling the
performance of flooding in wireless multi-hop ad hoc networks. Comput. Commun.,
29(8):949-956.

[Whitbeck and Conan 2010] Whitbeck, J. and Conan, V. (2010). Hymad: Hybrid dtn-
manet routing for dense and highly dynamic wireless networks. Comput. Commun.,
33(13):1483-1492.

	Introduction
	Exploring device proximity
	Communication framework for ubiquitous computing
	Connect-aware layer
	Network layer
	Application layer

	Proof of concept
	Related Work
	Conclusions and Future Work

